Homomorphisms into Simple Z-stable C∗-algebras

نویسنده

  • HUAXIN LIN
چکیده

Let A and B be unital separable simple amenable C*-algebras which satisfy the Universal Coefficient Theorem. Suppose that A and B are Z-stable and are of rationally tracial rank no more than one. We prove the following: Suppose that φ, ψ : A → B are unital *monomorphisms. There exists a sequence of unitaries {un} ⊂ B such that lim n→∞ unφ(a)un = ψ(a) for all a ∈ A, if and only if [φ] = [ψ] in KL(A,B), φ] = ψ] and φ ‡ = ψ‡, where φ], ψ] : Aff(T(A)) → Aff(T(B)) and φ‡, ψ‡ : U(A)/CU(A) → U(B)/CU(B) are the induced maps (where T(A) and T(B) are the tracial state spaces of A and B, and CU(A) and CU(B) are the closures of the commutator subgroups of the unitary groups of A and B, respectively). We also show that this holds if A is a rationally AH-algebra which is not necessarily simple. Moreover, for any strictly positive unit-preserving κ ∈ KL(A,B), any continuous affine map λ : Aff(T(A))→ Aff(T(B)) and any continuous group homomorphism γ : U(A)/CU(A)→ U(B)/CU(B) which are compatible, we also show that there is a unital homomorphism φ : A→ B so that ([φ], φ], φ ‡) = (κ, λ, γ), at least in the case that K1(A) is a free group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras

In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...

متن کامل

Hyers-Ulam-Rassias stability of n-Jordan *-homomorphisms on C*-algebras

In this paper, we introduce n-jordan homomorphisms and n-jordan *-homomorphisms and Also investigate the Hyers-Ulam-Rassiasstability of n-jordan *-homomorphisms on C*-algebras.

متن کامل

Fixed point approach to the Hyers-Ulam-Rassias approximation‎ ‎of homomorphisms and derivations on Non-Archimedean random Lie $C^*$-algebras

‎In this paper‎, ‎using fixed point method‎, ‎we prove the generalized Hyers-Ulam stability of‎ ‎random homomorphisms in random $C^*$-algebras and random Lie $C^*$-algebras‎ ‎and of derivations on Non-Archimedean random C$^*$-algebras and Non-Archimedean random Lie C$^*$-algebras for‎ ‎the following $m$-variable additive functional equation:‎ ‎$$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...

متن کامل

$n$-Jordan homomorphisms on C-algebras

Let $nin mathbb{N}$. An additive map $h:Ato B$ between algebras $A$ and $B$ is called $n$-Jordan homomorphism if $h(a^n)=(h(a))^n$ for all $ain A$. We show that every $n$-Jordan homomorphism between commutative Banach algebras is a $n$-ring homomorphism when $n < 8$. For these cases, every involutive $n$-Jordan homomorphism between commutative C-algebras is norm continuous.

متن کامل

A Certain Class of Character Module Homomorphisms on Normed Algebras

For two normed algebras $A$ and $B$ with the character space   $bigtriangleup(B)neq emptyset$  and a left $B-$module $X,$  a certain class of bounded linear maps from $A$ into $X$ is introduced. We set $CMH_B(A, X)$  as the set of all non-zero $B-$character module homomorphisms from $A$ into $X$. In the case where $bigtriangleup(B)=lbrace varphirbrace$ then $CMH_B(A, X)bigcup lbrace 0rbrace$ is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012